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ABSTRACT
Multidisciplinary optimisation aims to enhance aircraft design by identifying the most promis-
ing configurations at early-stage. The approach proposed in this paper exploits model-based
engineering principles for the development of a versatile software framework which can in-
clude multiple disciplines with multiple fidelity levels. A wing planform optimisation proce-
dure for transonic aircraft is established by focusing on minimum drag coefficient, maximum
aerodynamic efficiency and minimum operating empty weight. Three models are employed,
specifically for aircraft mass estimation, longitudinal stability and aerodynamics. The latter
computes aircraft aerodynamic performance using corrected Vortex Lattice Method and either
Radial Basis Function interpolation or Neural Network as surrogate models to speed-up the
process. Results are provided for the multi-objective optimisation of the wing planform of the
Common Research Model. In addition, the impact of surrogate modelling for aerodynamics
on early-stage design is investigated and an effective strategy to minimise computational time
is proposed as framework’s feature. Overall, the framework allows for a quick identification
of optimal wing planforms and it provides effective guidance to the human designer.

Bristol, UK, 24 - 26 July 2018.
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Acronyms
CAD Computer Aided Design
CRM Common Research Model
OEW Operating Empty Weight
PSO Particle Swarm Optimisation
RBF Radial Basis Function
TPS Thin Plate Spline
VLM Vortex Lattice Method

1.0 Introduction
Multidisciplinary optimisation represents the new frontier of aircraft design [1]. It promises
to reduce cost and time for developing new products by providing better configurations at
an earlier stage [1, 2]. In this context, gradient-free optimisation techniques, which do not
rely on differentiable objective functions, are often adopted by engineers to optimise complex
systems [3]. They proved to be an effective choice when a large number of design variables
are involved [4] and this is the case of early-design since no decision about the aircraft con-
figuration is made at that stage. Usually, gradient-free methods require many evaluations of
the objective function and this can lead to high computational cost. However, such cost ulti-
mately depends on simulations’ accuracy and multi-fidelity approaches have been proposed
in literature as a remedy for shape optimisation [5, 6]. A multi-fidelity application of aerody-
namic optimisation to early-design for general aviation aircraft is proposed in [7]. A genetic
algorithm is exploited to identify the best propeller locations. Aerodynamics is modelled with
both computational fluid dynamics and low-fidelity tools. Another strategy often employed
for multi-fidelity applications is surrogate modelling which speeds-up the optimisation pro-
cess by exploiting a database of pre-computed data [5, 6].

Including additional disciplines besides aerodynamics needs the development of a multi-
disciplinary framework for optimisation purposes. A summary of possible strategies targeting
high-fidelity simulations is presented in [8]. The distinction is made between monolithic and
distributed architectures while it is highlighted that further research is needed on the latter.
Another example of framework is given in [9] where a genetic algorithm is adopted to opti-
mise general aviation aircraft at conceptual design stage. The optimisation is performed using
software units corresponding to distinct disciplines and it is led by airworthiness requirements.
Generally, applications found in the academic literature provide only a small number of tools
to calculate aerodynamic and structural performance. However, early-stage design in the in-
dustrial context requires a framework capable of incorporating existing tools and database of
experimental data in order to give complete freedom to the designer [10].

A possible solution to address this problem as well as including multi-fidelity is to im-
plement a software framework according to model-based engineering principles [11]. Such
frameworks rely on a set of distinct models with definitions of how they interact [11]. Al-
though model-based principles have been available in literature since the beginning of 90s,
their application to aircraft design is a recent development. In [10] a model-based framework
is employed to study the performance of general aviation aircraft. Besides aerodynamics, the
system includes models for physical parts such as engines and fuel tanks among others. The
resulting framework is versatile since it incorporates existing tools developed in a variety of
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Figure 1. Workflow for the optimisation loop.

programming languages as well as models based on experimental data. In addition, infor-
mation is encapsulated inside models so that data-transfer is minimised during simulations.
This improves the overall computational cost and allows large scale simulations composed
of many interacting software components.

In this paper, a model-based approach is exploited for multidisciplinary optimisation of
wing planform for transonic aircraft at early-stage design. The aim is to provide the designer
with a useful tool which is able to take into account targets and constraints coming from
multiple disciplines and suggest modifications to the reference geometry. The paper proceeds
with a description of the framework in Section 2. The wing planform optimisation problem
is formulated in Section 3. Results are given in Section 4 for the particular case of optimising
the Common Research Model (CRM) wing. The model-based framework allowed for an
investigation concerning surrogate modelling for aerodynamics and results are given in the
second part of Section 4. Conclusions and an outlook of future work are given in Section 5.

2.0 Method
The optimisation loop is implemented using a model-based approach [11] with parametrisa-
tion of the model, objective functions and constraints defined by the user. Specifically, the
implementation is coded in an object-oriented way [12]. Interfaces declare inputs and outputs
capabilities for each distinct class of models. In turns, a model belonging to a given class must
meet the requirements set by the interface. Communication between models is only allowed
through channels defined by interfaces. As a result, the software is composed of models and
definitions of their interactions. In turn, each model can use one or more tools to undertake its
task so that multi-fidelity approaches and reusing of existing data and software are possible.

The workflow for the optimisation is depicted in Fig. 1 where the interconnections between
models are highlighted. The model-based architecture requires that each block in Fig. 1 is
composed of an interface and an associated model. Regarding the optimiser, it is based on
Particle Swarm Optimisation (PSO) algorithm implemented in parallel [13]. It performs a
search for global optimality which requires up to thousands evaluations of the objective func-
tion. The objective function depends on the parametrisation defined by the user and it can
be a weighted sum of single objectives. The optimiser interrogates the performance model
to compute the objective function and assess new sets of parameters. Optimal solutions are
returned when the maximum number of iterations is reached or a convergence criterion is met.
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Figure 2. Graphical representation of the performance model.

Regarding the performance model, it is intended for the purpose of wing planform optimi-
sation and its layout is shown in Fig. 2 with inputs and outputs placed on the left and right
sides of the block, respectively. The user defines a flight condition and a wing planform to
be assessed. The flow of the information is clearly identifiable and four other models con-
cerning geometry, aerodynamics, mass estimation and centre of gravity are involved. Starting
from geometric parameters given as input by the optimiser, a new geometry is produced by
the parametric Computer-Aided Design (CAD) model. The mass estimation model provides
a value for the aircraft mass and its spacial distribution. The centre of gravity position is
calculated using such mass distribution by a model developed on purpose. The flight con-
dition is then used by the aerodynamic model to compute lift and moment which guarantee
equilibrium of forces. The model provides angle-of-attack, tail rotation, load distribution
and stability derivatives. Output is collected from all these models and made available to
the optimiser for the next iteration.

A brief description of models composing the performance block is provided hereafter. The
parametric CAD used by the geometry model is an in-house code developed at Airbus for the
purpose of early-stage design. Parametrisation concerns wing planform but it is not limited
to geometrical quantities in general. Mass estimation is performed with semi-empirical meth-
ods discussed in [14] and implemented in the corresponding model. The operating empty
weight (OEW) is computed by referring to a target maximum take-off weight. Contribu-
tions from fuselage, wing, horizontal and vertical tails, landing gear, engines are taken into
account. Additional weight to cope with buckling and critical load factors is considered. Cen-
tre of gravity position is obtained from the mass distribution. Such information is needed
to compute stability derivatives accurately. The implementation of the aerodynamic model
follows a multi-fidelity paradigm using multiple tools with fidelity levels ranging from em-
pirical theories for finite wings [15] to vortex lattice method (VLM) [16]. Three tools are
exploited in this paper. The first is the open-source VLM code AVL [17]. A trim calculation
is performed so that angle-of-attack and horizontal tail deflection are updated to meet lift and
moment requirements. When transonic flows are involved, results from AVL are corrected
with empirical methods so that wake and viscous contributions are added to the drag coeffi-
cient. Stability derivatives are computed with finite differences around the trimmed solution
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and taking the centre of gravity as reference point. Secondly, a surrogate model based on ra-
dial basis function interpolation (RBF) [18, 19] is available. A database of aerodynamic data,
which can contain either experimental or pre-computed data, is employed to interpolate the
aerodynamic performance for new configurations. Thirdly, an artificial neural network [20]
based on multilayer perceptron algorithm [21] and a logistic activation function is an addi-
tional surrogate for the aerodynamic model. One hidden layer is adopted and its number of
neurons is obtained by tuning the network to the specific test case. Weights for the neurons are
computed with back-propagation [22]. The implementation relies on an open-source machine
learning framework implemented in Python [23].

3.0 Formulation
The wing planform optimisation problem is formulated in this section. A typical transonic
wing is unequivocally defined with seven parameters as shown in Fig. 3(a). The sequence of
parameters is named configuration. They represent displacements from the wing planform to
be optimised. Thus, when all the parameters are zero, the baseline wing is obtained. Precisely,
parameters P1, P2, P3 define the vertical displacement of the trailing edge points with P1
defining the root chord. Note that the first, straight, part of the wing in Fig. 3(a) is assumed to
be inside the fuselage and its spanwise length is assumed to be constant. Parameters P4 and P5
define the leading edge location so that chord lengths at the kink and at the tip are given by P5 -
P2 and P4 - P3, respectively. Apart from the root chord P1 for which a maximum variation of
±10% from the reference is allowed, the parameters are not bounded. The set of geometrical
constraints are reported in Fig. 3(b). They mainly avoid planforms with negative sweep angles
or M-shaped wings by requiring a positive clockwise angle between the three segments which
define each edge. In addition, a minimum length constraint cmin is imposed on the tip chord
to avoid pointy wings. Besides geometrical constraints, a requirement for a stable configura-
tion is formulated. The corresponding inequality is based on the value of the dCm/dα stability
derivative which must be negative for longitudinally stable aircraft. When using VLM aero-
dynamics, configurations with angle-of-attack and elevator angles outside the range [−4, 4]
were considered not physical and discarded. Overall, the parametrisation allows the planform
to assume a variety of shapes ranging from rectangular straight to tapered swept wings.

Regarding the objective function, it can be chosen among OEW, aerodynamic efficiency and
drag coefficient. Its value is referred to the performance of the baseline geometry according
to the practice usually adopted in early-stage aircraft design. The mathematical formulation
of the problem is summarised in Table 1.

4.0 Results
The model-based software architecture was exploited to optimise the wing planform of the
Common Research Model (CRM) [24] flying at Mach number M = 0.85, altitude of 10000m,
take-off weight of 2.472 × 105 kg. The baseline geometry is illustrated in Fig. 4 using the
parametric CAD. It is composed of wing, fuselage, horizontal tail and the latter can be rotated
around its mid-chord axis. The geometry of the torsion box, size and distribution of ribs are
defined parametrically depending on wing geometry.

The optimisation is performed applying PSO and successful convergence is assumed when
the maximum distance between positions of swarm particles and the swarm best particle is
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Figure 3. Geometric parameters and constraints used for the optimisation.

Figure 4. Baseline geometry of the CRM as depicted with the parametric CAD software.

smaller than 1 × 10−5 at two successive iterations. Velocity is updated for each particle every
iteration by taking into account 50% of its velocity at the previous iteration, 50% of particle’s
change of position and 50% of swarm best particle’s velocity. Simulations can be performed
either in serial or parallel with an implicit-parallelism paradigm.

Optimisation was first performed using VLM with empirical corrections for transonic flows
as a tool for the aerodynamic model. The acronym VLM will be used in the following to refer
to this model. Three single-objective optimisations were performed, specifically maximising
aerodynamic efficiency, minimising OEW and drag coefficient. The PSO optimiser was run
with a swarm size of 128 and maximum number of iterations was set to 10. Results are
presented with wing planform and lift distribution in Fig. 5 and they are compared to reference
values computed for the CRM baseline. Results minimising single-objectives correspond to
impractical configurations since not all requirements of the problem are taken into account.
For example, the wing planform maximising aerodynamic efficiency is shown in Fig. 5(a).
Wingspan is larger and overall the wing is more slender when compared to the underlying
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Figure 5. Selected configurations produced by the optimiser.
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Function/Variable Description

minimise f ∈
{

CD
CDref

,
OEW

OEWref
,−

E
Eref

}
Objective function chosen from
a set of design targets

with respect to Pi ∀i ∈ [1, 7] Wing platform alterations with
respect to the baseline

subject to
c3 ≥ c4 ≥ 0
c2 ≥ c1 ≥ 0
c5 ≥ cmin

Geometric constraints to limit
the optimisation to wings with
positive sweep angle and a min-
imum chord length at the tip

subject to
dCm

dα
< 0 Condition for a statically stable

aircraft

Table 1. Formulation of the multidisciplinary optimisation problem.

reference. The corresponding lift distribution is in Fig. 5(b). The total CL is larger than
the reference value and most of the increment in the loading is located at the wing root.
Aerodynamic efficiency is improved by 7.8%, OEW decreased by 1.2% and drag coefficient
increased by 8.6%. The configuration shown in Fig. 5(c) minimises the OEW by concentrating
most of the mass close to the wing root. The outer part of the wing is very slender and the
wingspan reduced. The structural mass required by such wing is 6% smaller than the one
needed by the baseline geometry. The plot in Fig. 5(d) shows that most of the load is carried
by the inner part of the wing. Aerodynamic efficiency is reduced by 7.8% and drag coefficient
increased by 61%. In Fig. 5(e), the planform with minimal drag coefficient is depicted. The
resulting planform has a small taper ratio with a positive sweep angle to reduce the shock drag
coefficient. Induced drag coefficient is minimised with a larger wingspan. The lift distribution,
which is shown in Fig. 5(f), has an almost monotonic decrease when starting from the root
chord. Drag coefficient is reduced by 28% but OEW is increased by 14%. Although the
configurations in Figs. 5(a), 5(c) 5(e) are interesting from the academic point-of-view, they
are impractical for industrial designers since they focus on a single objective at once. Multiple,
conflicting objectives must be taken into account during the optimisation.

Two-objective optimisation
Focus is now on configurations which are a trade-off of two objectives. Optimisations were
performed using PSO with a swarm size of 128 for 48 iterations. Specifically, three optimi-
sations are considered. The first one minimises OEW and maximises aerodynamic efficiency
and the outcome is presented in Fig. 6. Configuration A is chosen as optimal solution located
on the Pareto front as shown in Fig. 6(a). The wing planform is shown in Fig. 6(b) where it
is compared to the baseline. OEW is minimised by 3.7% with a reduction of wingspan. The
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Figure 6. Results for configuration A which is on the Pareto front obtained by minimising OEW and maximising
aerodynamic efficiency.
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kink moves outward so that the trailing edge sweep angle of the inner wing is reduced. Over-
all, the wing is more slender and this factor improves aerodynamic efficiency by 5.2%. The
quarter-chord sweep angle is larger when compared to the baseline. Lift distribution is given
in Fig. 6(c) for the same configuration. In general, wing loading is increased everywhere and
drag coefficient, which is not included in the optimisation, increases by 30%.

Regarding the second optimisation in Fig. 7, it minimises both OEW and drag coefficient.
Configuration B is located on the resulting Pareto front as depicted in Fig. 7(a). Its wing
planform is very similar to the CRM baseline, Fig. 7(b). The kink is slightly moved out-
ward while few changes were found for sweep angle. In particular, trailing edge sweep angle
does not change significantly. Overall, the lift distribution in Fig. 7(c) is smooth and lower
everywhere. Results for configuration B suggest a consideration. Little modifications to the
baseline improve both drag coefficient and OEW by 2.5% and 1%, respectively, while aero-
dynamic efficiency decreases by only 0.25%. The optimiser managed to identify these key
modifications without relying on human experience. The educational implications are clear
since this tool could help inexperienced engineers to improve their designs.

A third optimisation was performed which maximises aerodynamic efficiency and min-
imises drag coefficient and its results are reported in Fig. 8. Configuration C is an one optimal
solution on the Pareto front which is shown in Fig. 8(a). The wing planform depicted in
Fig. 8(b) is very slender. The wingspan is increased by more than 5 meters while the tip chord
is kept at the minimum. The root chord is slightly reduced and the kink is moved outward.
Sweep angle for the inner wing decreases whereas it is unaltered for the outer part. Lift dis-
tribution is shown in Fig. 8(c) and compared to corresponding results for the baseline. Load
is smaller everywhere along the wingspan. Additional lift is produced by the outer part of
the wing. Thus, aerodynamic efficiency increases by 4.5% and drag coefficient is reduced by
7.3%. However, OEW is not taken into account and it increases by 2%.

Multi-objective optimisation
Multi-objective optimisation was performed for three objectives simultaneously. Specifically,
OEW and drag coefficient are minimised while aerodynamic efficiency is maximised. Particle
swarm optimiser was run with a swarm size of 128 for 48 iterations. The resulting three-
dimensional Pareto front is shown in Fig. 9(a). Identifying the reference configuration for
CRM in the plot is quite difficult. It is dominated and, thus, located in the cloud of points.
A configuration named D is chosen on the Pareto front and depicted in Fig. 9(b). Regarding
the inner wing, its sweep angle is smaller than the reference’s one. Conversely, the outer
wing shows an slightly increased sweep angle. Overall, the wing span increases by 10%, the
wing kink moves outward and the tip chord is slightly smaller as well. The corresponding lift
distribution is shown in Fig. 9(c). Load increases on the inner wing but it is almost identical to
the reference from the kink onward. Lift distribution is extended because of the longer wing
span and this results in a higher global lift coefficient for the wing. Aerodynamic efficiency
is increased by 5.6%, drag coefficient reduced by 4.1% and OEW decreased by 0.8%. The
multi-objective optimisation implemented inside the model-based framework proved to be an
effective tool to improve multidisciplinary objectives simultaneously.

4.1 Surrogate modelling for aerodynamics
The model-based framework allows for substitution of models at any time. This feature was
exploited to replace the aerodynamic model based on VLM and an investigation on surrogate
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Figure 7. Results for configuration B which is on the Pareto front obtained by minimising both OEW and drag
coefficient.
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Figure 8. Results for configuration C which is on the Pareto front obtained by maximising aerodynamic
efficiency and minimising drag coefficient.
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modelling is presented in this section. The main challenge is the variety of wing planforms
which need to be assessed. Their geometries can differ considerably and surrogate models
should be able to provide accurate results with a limited set of data. Two types of surrogate
models were investigated, specifically RBF interpolation and neural network. They both rely
on a database of pre-computed aerodynamic data to evaluate performance of new configura-
tions. Inputs consist in the seven geometrical parameters which define the wing planform.
Outputs are 8 and they include lift coefficient, angle-of-attack, drag coefficient and aerody-
namic efficiency. Without loss of generality, performance of surrogate models is compared to
VLM aerodynamics by reporting results for a two-objective optimisation which aims to min-
imise both OEW and drag coefficient. Similar results were obtained for optimisation aiming
to maximise aerodynamic efficiency and minimise either OEW or drag coefficient but they
are not reported in the paper for sake of brevity. A quantification of the error provided by
surrogate models is obtained by recomputing optimal configurations with VLM. Specifically,
a VLM computation is performed for each configuration on the Pareto front and values of
objective functions are compared to the ones provided by the surrogate model. Their ratios
with respect to exact values provided by VLM are collected so that average error and standard
deviation are computed and expressed as a percentage.

Regarding the aerodynamic database, it can be populated with pre-existing experimen-
tal data when it is available. For this paper, it will be generated using VLM instead.
The 7 parameters which define the wing planform (Tab. 1) are now limited to the range
pi ∈ [−4, 4],∀i ∈ [2, 6]. An exception is made for the root chord which spans a smaller range
p1 ∈ [−2, 2]. Aerodynamic data for a number of 438 configurations uniformly distributed in
the parameter space was computed with VLM. It is normalised in a range of [−1, 1] so that all
inputs and outputs have the same order of magnitude and interpolation returns accurate results.
In addition, only interpolation is allowed in order to avoid inaccuracy due to extrapolation.

The surrogate model based on RBF is described first. Its application is composed of three
steps. First, an RBF function is chosen. Secondly, the RBF matrix is assembled, inverted
and stored in memory. Thirdly, the interpolation is computed by exploiting the inverted ma-
trix only when aerodynamic data is requested by the performance model. Concerning the
radial basis function, it should be chosen according to the data to be interpolated and a brief
investigation was performed. Three radial functions are compared in Fig. 10(a) for values
of distance ρ ∈ [0,

√
7]. Note that the maximum distance ρ between any two configura-

tions is 2
√

7 because of the input data normalisation. The three functions assign different
weights to configurations in the parameter space. Thin Plate Spline (TPS) function is defined
as φ(ρ) = ρ2 log ρ and it assign a higher weight to configurations far in the parameter space.
Conversely, Gaussian function φ(ρ) = e−ρ

2
relies on configurations closer than half parameter

space. A modified version of the Gaussian, specifically φ(ρ) = 2−4ρ2
, is defined to assess RBF

when configurations closer than a quarter of parameter space are considered. Performances
of the three functions were compared by running a two-objective optimisation aiming to min-
imise both OEW and drag coefficient. Results are depicted in Fig. 10(b) where a comparison
with VLM is included as well. Three approximations of the Pareto front were produced. Us-
ing the Gaussian function leads to results which reproduce the general trend with an average
error of 10.0%. Results produced with the modified Gaussian function match accurately the
reference for configurations located in the central region of the Pareto front and an average
error of 11.5% is found. Conversely, TPS, which focus on far configurations instead, provides
the best results in any region of the Pareto front with an average error of 7.62%.
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Figure 11. Influence of the number of samples on the MDO results.

The trend was confirmed by running the same optimisation using RBF interpolation with
a database containing 5, 10, 50, 100, 200, 300 samples. Although results are not reported
here for sake of brevity, the TPS function consistently provided the least error. All databases
with less than 400 configurations returned an error larger than 9% with respect to the VLM
reference and the convergence curve is shown in Fig. 11(a). An additional simulation with
a database build with 15220 configurations uniformly distributed in the parameter space was
performed. Such large number of configurations is impractical for industrial application but
it is useful for academic investigation. An average error of 3.70% is found when TPS is
adopted whereas Gaussian and modified Gaussian functions provide an average error of 4.0%
and 9.34%, respectively. In Fig. 11(b), Pareto fronts identified using TPS with 438 and 15220
samples are compared. Increasing the number of samples by a factor of 35 leads to bet-
ter results since a difference of 3.92% between the two set of results is found. The TPS
function using 438 samples is chosen as reference RBF model since it represents a trade-off

between accuracy and number of samples.
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Figure 12. Comparison of multi-objective optimisation using RBF and Neural Network as surrogate models.

The surrogate model based on neural network is described next. Note the same database
and the same scaling of input and output variables employed for the RBF model were used
to train the neural network as well. A brief investigation was performed to choose the size of
the network. Regarding inner and outer layers, the amount of neurons is defined by the num-
ber of inputs and outputs. According to the number of inputs (7) and outputs (8), guidelines
proposed in [25] suggest a number of hidden neuron ranging from 7 to 20. Thus, three two-
objective simulations aiming to minimise OEW and drag coefficient were performed with a
size of the hidden layer ranging between 4 and 16. In addition, three large values (specifically
64, 256 and 512) were included in the investigation as well. Results are reported in Fig. 12(a)
and they are compared to VLM reference. Using 4 neurons produces configurations which
dominate the VLM ones. However, a quantification of the error showed that the neural net-
work overestimated the performance and an average error of 10.4% was found. Increasing
the number of neurons to 8 improves the results. Using neural networks, the smallest average
error of 9.6% is found for 8 neurons. Further increasing their number to 16, 64, 256, 512 leads
to inaccuracies and the average error becomes 11.2%, 12.7%, 11.2% and 14.6%, respectively.
In Fig 12(b), a comparison of results produced with all models described so far is presented.
Both surrogate models are able to identify the Pareto front accurately. However, the good
agreement is limited to the central region of the Pareto front when it comes to neural network.

A summary concerning the computational cost of surrogate modelling is given. Statistics
is reported here for the RBF model which uses TSP and the neural network with 8 neurons.
Note that only the aerodynamic model is replaced and when evaluating the objective func-
tion, part of computational time is still employed to run the mass estimation model, stability
model as well as to transfer data. Computations were performed using a single core of an
Intel i7 4810MQ CPU. The total computational cost is split into two contributions. The first
one is the computation of the aerodynamic database which was used by both surrogate mod-
els. It took 438 evaluations of the objective function using VLM for a total of 17 m 50 s
which includes 1 s for each evaluation to execute all models and transfer the data. Regard-
ing RBF, the matrix inversion needed to compute RBF coefficients took roughly 5 s and it
was performed once. Secondly, interpolation of aerodynamic data for one configuration took
0.23 s and this task had to be repeated for 48 iteration and a swarm size of 128. Thus, the
total time needed to run the MDO simulation with RBF model is 41m 20s split between
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building the surrogate model (17 m 50 s) and using it (23 m 30 s). Regarding the surrogate
model based on neural network, it needs 25 m 51 s to perform the optimisation for a total
of 43m 41s, which is comparable to the amount of time needed by the RBF model. These
numbers compare to the VLM reference. The cost of evaluating the objective function using
aerodynamics based on VLM is 1.5 s on a Intel i7 4810MQ CPU and this task was repeated
for 48 iteration and a swarm size of 128. The total time employed to perform the optimisation
is about 2 h 33 m using a single core.

4.2 Hybrid modelling for aerodynamics

Although surrogate models proved to be a promising way to speed-up multidisciplinary op-
timisation, their bottleneck is collecting data for the training step. A solution is proposed by
developing a hybrid model which can run either VLM or its surrogate according to the need.
When aerodynamic data is requested, the surrogate model based on RBF is employed to com-
pute an approximation. Quality of results is assessed using a criterion, which is discussed in
the next paragraph, and two scenarios are then possible. If the criterion is satisfied, aerody-
namic data is returned and no further action is taken. If not, a VLM simulation is performed
and its results are returned as well as stored in a database to improve the surrogate model. Note
that only VLM solutions populate the database for RBF model. At each iteration, RBF co-
efficients are computed by inverting the RBF matrix and stored for successive interpolations.
Until the first iteration is complete, only VLM aerodynamics is adopted so that a database of
aerodynamic data is available for RBF interpolation starting from the second iteration.

Regarding the criterion for switching between VLM and RBF, it is based on statistical anal-
ysis of previous optimisation data. Specifically, two set of results were considered. The first
one is composed of all configurations assessed with VLM during the two-objective optimi-
sation aiming to minimise OEW and drag coefficient. They were depicted in Fig. 7. The
second one contains data produced with RBF model when performing the same optimisation.
Results were already shown in Fig. 11(b). Each set is considered in turn. For each wing
planform, a number of neighbouring configurations were identified based on their Euclidean
distances in the parameter space. The standard deviation σ between aerodynamic data for the
specific configuration (i.e. lift and drag coefficients, elevator deflection, angle of attack etc)
and for its close neighbours was computed. As a result, a cumulative distribution which links
σ to the percentage of configurations with a lower value of standard deviation is obtained. In
Fig. 13(a), such distribution is shown for both databases and for three numbers of neighbours,
specifically 2, 4 and 8. Values of σ ranging from 0 to 0.35 are found. Note that aerody-
namic data for 95% of configurations has a standard deviation of less than σ < 0.225 when
2 or 4 neighbours are considered. A close-up in the region around σ ≈ 0.225 is depicted in
Fig. 13(b). It is shown that results produced with VLM and RBF converge to σ ≈ 0.25 when
the number of neighbouring configuration is 8. Information in Fig. 13 was exploited to set
a threshold σt = 0.15 and a number N = 5 of neighbours as a criterion to switch between
VLM and RBF model. Interpolated data is considered reliable when its standard deviation
from the closest 5 neighbours σ is σ < σt.

Performing a two-objective optimisation to minimise OEW and drag coefficient with the
hybrid model using a swarm size of 128 for 48 iterations, a threshold σt = 0.15 and a num-
ber N = 5 of neighbours took 44 m 17 s on a Intel i7 4810MQ CPU using a single core.
Results are shown in Fig. 14. The ratio between the number of evaluations of the objective
function using VLM and RBF is depicted in Fig. 14(a). The first iteration is performed with
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Figure 13. Cumulative distribution of standard deviation used to identify the threshold value for the hybrid
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Figure 14. Multi-objective optimisation using the hybrid model. Results are compared to VLM as well as RBF.

VLM since no database is available to perform RBF interpolation. The following 3 itera-
tions show no contribution by the surrogate model as well. This is due to values of σ for
interpolated aerodynamic data which are above the threshold σt = 0.15. Starting from the
fifth iteration, results from the surrogate model are considered accurate with σ < σt. The
number of evaluations performed with RBF increases and by the end of the simulation a to-
tal of 43% of configurations was assessed exclusively with the surrogate model. The Pareto
front obtained with the hybrid model is compared to the ones computed with RBF and VLM
in Fig. 14(b). Overall, a very good agreement is found between the hybrid model and the
VLM reference. Results for the lower region of the Pareto front match accurately and the
upper region, for which fewer configurations are available, is identified too. In addition, a
comparison is provided between the hybrid model and the RBF one. The latter is able to
reproduce the upper region of the Pareto front properly. Concerning the lower part, the hybrid
model provides more accurate results.
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Method Average error Standard deviation Computational time

VLM - - 100%
RBF 7.62% 14.6% 27.0%

Neural Network 9.60% 17.0% 28.5%
Hybrid 0.784% 2.32% 28.9%

Table 2. Performance of surrogate models for aerodynamics. Error and its standard deviation are referred to
the exact value computed with VLM and expressed as a percentage.

A quantitative summary of the investigation concerning surrogate modelling for aerody-
namics using RBF, neural network and hybrid model is provided in Table 2. Results for the
same two-objective optimisation aiming to minimise OEW and drag coefficient are compared.
The surrogate model based on RBF interpolation identifies the Pareto front with an average
error of 7.62%. The computational cost is reduced to almost a quarter of the VLM and this
figure is similar for all surrogate models. The neural network is the least performing of the
surrogate models since its error is 11.2% on average and the corresponding computational
time is decreased to 28.5%. Conversely, the hybrid model provides the best results with an
error smaller than 1% at the same computational cost. The total time needed by the hybrid op-
timisation is 44m 17s since evaluations took 1.5s and 0.23s using VLM and RBF, respectively.
A higher number of VLM evaluations (around 1500) is performed for the hybrid model when
compared to the RBF surrogate, which used 438 VLM simulations for the sampling instead.
However, the computational time for data-transferring and execution of external models is
negligible for the hybrid optimisation since both VLM and RBF are now part of the same
model and no additional overheads is needed. Note also that the computational time and
accuracy of the hybrid model changes as a function of the threshold. For example, further
reduction of time were obtained by performing the same two-objective optimisation using a
threshold σt = 0.20. An average error of 1.18% was found and the total computational time
was 27 m 41 s which is 18% of the reference.

5.0 Conclusions and next steps
The development of a novel model-based framework for multidisciplinary wing planform
optimisation at early-stage aircraft design is presented in this paper. The software is composed
of a particle swarm optimiser and a performance model for the assessment of new planform
configurations. The latter consists of multiple interacting models which focus on distinct
disciplines such as aerodynamics, mass estimation and longitudinal stability.

An application of the framework to optimise the wing planform of the Common Research
Model is presented. Results are discussed for single-objective, two-objective and multi-
objective optimisations using vortex lattice aerodynamics. Some optimal configurations lo-
cated on Pareto fronts are analysed in detail. Overall the framework provides effective guid-
ance to the human designer who receives suggestions on modifications which improve the
reference geometry.

The modal-based framework allows the substitution of models at any time. This feature
was exploited to investigate on surrogate modelling for aerodynamics at early-stage design.
A key challenge is to cope with a large variety of wing planforms and two methods were
assessed using the same training data. First a surrogate model based on Radial Basis Function
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interpolation is presented. Secondly, a neural network with three layers is described. The
former provides accurate results and a reduction of about 75% in terms of computational
cost. The main limitation of surrogate models is the need for a training set of data. This
problem was addressed developing a hybrid model which switches automatically between
vortex lattice aerodynamics and the surrogate model. The switching criterion is defined in
an objective way to rule out any arbitrariness. Overall, the hybrid model provides excellent
accuracy at the computational cost of surrogate models.

Future work will focus on developing a new aerodynamic model based on a high-fidelity
tool such as computational fluid dynamics. In addition, the mass estimation model will use
in-house tools based on experimental data.
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