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Abstract: This work reports on the results produced for the Aeroelastic Prediction Workshop
3 (AePW-3) using the BAE Systems Corporate CFD Suite as part of the High Angle-of-attack
Working Group (HAWG). The reference test case is the NASA Benchmark Supercritical Wing
(BSCW) in R-134a at M = 0.8 with an angle-of-attack of 5 deg. The aim of the work is to es-
timate the flutter critical condition using a coupled numerical model composed of high-fidelity
computational fluid dynamics and a structural mechanics modal solver. Results from two dis-
tinct approaches are provided. The first one relies on a set of time-marching, initial disturbance
simulations, where aerodynamics is fully non-linear. Flutter is identified by post-processing
the time-histories of the structural degrees-of-freedom with the logarithmic decrement or the
matrix-pencil method. The second approach is based on the evaluation of an interaction ma-
trix Q which links (linearly) a change in the aerodynamic forces to a change in the structural
degrees-of-freedom. Such matrix is computed with linearised methods, specifically the lin-
earised frequency domain (LFD) and the pulse-excitation method. The flutter condition is then
obtained with the P-K method and using the Q matrix. Steady-state RANS equations with the
SA turbulence model were employed to compute the aeroelastic trimmed solutions. Such equi-
librium conditions were then used as starting point for all URANS simulations and as lineari-
sation points for the LFD and the pulse-excitation methods. Regarding the linearised methods,
the effects of the linearisation point on the final flutter results were investigated. Overall, the
flutter results presented in this paper confirm the preliminary data available in literature for both
non-linear and linearised methods.

1 INTRODUCTION

Accuracy and a short time-to-solution are crucial for flutter simulations in the long-term vision
of the digital twin concept [1]. The accuracy requirement can be met by using Computational
Fluid Dynamics (CFD) for the evaluation of aerodynamic loads and Computational Structural
Mechanics (CSM) for the structural dynamics. Thus, the coupled CFD-CSM model repre-
sents the state-of-the-art for the estimation of the flutter envelope. In short, its most accurate
implementation is based on time-marching unsteady simulations with a continuous exchange
of information between the non-linear CFD and non-linear CSM solvers. Although this ap-
proach represents a valid tool for all flow conditions, a reduction in computational cost (and
complexity) of the flutter analysis can be achieved with some linearisations. The first one is
usually performed on the CSM side since a modal formulation is often sufficient for structural
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dynamics [2]. This leads to a CFD-CSM model composed of a fully non-linear CFD solver
and a modal (i.e. linearised) CSM solver. This approach will be referred to as non-linear
method hereafter and it has been successfully used to predict the flutter envelope of well-known
aeroelastic test cases [3]. A second linearisation can be performed on the CFD side around an
equilibrium condition. The idea is to summarise the fluid-structure interaction with a frequency-
dependant interaction matrix, Q. Each complex-valued entry of Q links (linearly) a change in
one structural degree-of-freedom (d.o.f. ) to a variation of one component of the aerodynamic
force at a specific oscillation frequency. Two methods are employed in this work to compute
Q. The first one, called Linearised Frequency Domain (LFD) [4], is based on the linearisation
of the flow equations around an equilibrium condition and the translation of the resulting linear
system into frequency-domain. In this way, the entries of Q are obtained directly in frequency-
domain. Another approach is to sample, in turn, the system’s d.o.f. with a pulse-excitation in
time-domain. The entries of Q are computed with a Discrete Fourier Transformation (DFT)
from the time-domain histories of the input (i.e. pulse-excitation for one d.o.f. ) and the outputs
(i.e. components of the aerodynamic force). Once the matrix Q is populated using either of
methods, the flutter condition is identified with the P-K method [5].

In this work, the non-linear approach and the two linearised methods (LFD and pulse-excitation)
are applied to the flutter analysis of the NASA Benchmark Supercritical Wing (BSCW) as part
of the Aeroelastic Prediction Workshop 3 (AePW-3), High Angle-of-attack Working Group
(HAWG) [17]. In the next Section 2, a quick description of the numerical methods is given.
Section 3 reports on the results from the flutter analysis and an additional investigation on the
spacial and temporal discretisation. Conclusions are given in Section 4.

2 NUMERICAL METHODS

The mathematical formulation of the aeroelastic model used in this paper is now derived. Struc-
tural equations are written as a first order ordinary differential equation in time t,

dws

dt
= Rs(wf ,ws) (1)

where ws is the vector containing the ns structural unknowns, Rs is the structural non-linear
residual function and wf contains the fluid unknowns. The residual function Rs is split in two
terms,

Rs(wf ,ws) = fs(ws) + fa(wf ,ws) (2)

where fs provides the influence of the structural dynamics on the structural residual and fa
accounts for external forces, e.g. aerodynamic forces, acting on the structure.

When a modal formulation with m modes is adopted [2], the vector ws of structural un-
knowns contains both the generalised coordinates η = [η1 . . . ηm]

T and their corresponding
time-derivatives η̇ = dη

dt , specifically ws = [ηT , η̇T ]T . Thus, the size of the structural problem is
ns = 2m. The function fs is then defined as

fs(ws) =

(
0 I

M−1K M−1C

)[
η
η̇

]
(3)

The matrices M , K and C are the generalised mass, stiffness and damping matrices, respec-
tively, and I is the identity matrix. Regarding the term fa, it contains the vector of generalised
aerodynamic forces (GAFs), i.e. the projection of the aerodynamic forces on the modal shapes.
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The non-linear aerodynamic equations are similarly written in a semi-discrete form as

dwf

dt
= Rf (wf ,ws) (4)

where Rf is the non-linear residual function corresponding to the fluid unknowns. The coupled
system of aerodynamic and structure is then written as

dw
dt

= R(wf ,ws) = R(w) (5)

by defining the vector w =
[
wT
f ,w

T
s

]T and R is the corresponding non-linear residual function.
The total number of unknowns is n = nf + ns where nf is the number of fluid unknowns.

In this work the aerodynamic forces in Eq. (4) are computed using CFD and the CSM in Eq. (1)
is implemented using the modal approach. Although the structure is modelled linearly, non-
linear phenomena such as the interaction between shock-wave and boundary-layer are fully
captured by Eq. (5).

The integration of Eq. (5) in time is referred to as non-linear CFD-CSM and a two-step proce-
dure is required to identify the flutter point with such tool. Firstly, an unsteady simulation is
performed for which Eq. (5) is integrated in time. At the beginning of the simulation an initial
disturbance in the generalised velocity of the modes is prescribed to enhance any instability of
the system. Second, when the simulation is finished, the resulting time-histories of the gen-
eralised coordinates are post-processed with either of the logarithmic-decrement (log-dec) [7]
or matrix-pencil [8] method to compute the damping. A converging/neutral/diverging time-
history corresponds to a positive/zero/negative damping value, respectively, with a diverging
curve hinting at the presence of flutter. When results from multiple initial disturbance analy-
ses are available, the damping value can be computed for each simulation. The zero damping
condition is then easily found by interpolation.

2.1 Flutter identification with linearised methods

Integrating Eq. (5) in time-domain can be computationally expensive for real-world models.
An alternative to reduce the computational cost is to solve the small-sized flutter problem in
frequency-domain with the P-K method [5]. Specifically, the flutter equation to solve is(

Mλ2 +K + Cλ−Q
)
ŵs = 0 (6)

where ŵs is the frequency-domain translation of the structural vector ws. The matrix Q is the
interaction matrix Q = ∂fa

∂ws
that relates the generalised aerodynamic forces fa to the structural

d.o.f.ws. Computing Q is the computationally expensive part of the linearised methods.

To compute the interaction matrix Q, the pulse excitation method [9] can be used. Starting
from an equilibrium condition, a forced-motion unsteady CFD-CSM simulation is performed
for each structural degree-of-freedom. The parameters which define the excitation shape and
the simulation settings are related to the frequency range of interest [3]. One time-domain
simulation is needed for each generalised coordinate, thus exciting one structural d.o.f. at time.
An additional drift simulation (i.e. with a non-moving structure) is optionally performed to take
into account any deviation of generalised forces from their equilibrium values. Once ready,
the time-histories of the generalised forces are post-processed. From each pulse excitation
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simulation, one corresponding row in the interaction matrix Q is computed with a Discrete
Fourier Transformation.

An alternative method for the computation of Q is the LFD [10, 11]. An equilibrium condition
is identified for which the non-linear, residual function of the aerodynamic equation is Rf ≈ 0.
This is usually the result of a steady-state simulation. In can be shown [3] that linearising
the flow equations around this equilibrium condition and assuming an harmonic motion of fre-
quency ω with amplitude ŵf and ŵs for the fluid and structural unknowns, respectively, the
LFD equation can be formulated as(

∂Rf

∂wf

− iωI

)
ŵf = −∂Rf

∂ws

ŵs (7)

Solving Eq. (7) must be performed with iterative methods for real-world test cases. Once the
complex-valued flow solution ŵf is computed, one column Qk of the interaction matrix Q =
[Q1, . . . , Qk, . . . Qm] relating the generalised aerodynamic forces fa to the structural degrees-
of-freedom is obtained with the chain rule

Qk =
∂fa
∂wf

∂wf

∂ws

=
∂fa
∂wf

ŵf (8)

2.2 Computational methods

Simulations were performed using the BAE Systems Corporate CFD Suite, known as Solar and
Flare [12, 13], which includes a mesh generator, CFD solver and an aeroelastic toolkit. The
aeroelastic toolkit is composed of: a mode shape mapping utility, a CSM solver as well as an
LFD solver. Regarding the CFD solver, a cell-centred, finite-volume approach is used to inte-
grate Eq. (4) for inviscid or viscous flows. A fully implicit scheme is employed for steady-state
computations and for the inner iterations of unsteady loops. Time integration is performed with
a high order Runge-Kutta scheme. The CSM solver used for this work is based on the modal
decomposition of structural deformations [2]. The structural equations are integrated with the
β-Newmark scheme [14]. The coupling between the CFD solver and the CSM solver is per-
formed at each time-step (loosely-coupled approach) with the possibility of running multiple
CSM inner iterations (strongly-coupled approach). The aerodynamic loads coming from the
CFD solver are used by the CSM solver to compute the up-to-date values of the generalised
coordinates. The deformation of the CFD surface mesh is the linear combination of the mode
shapes scaled by their corresponding generalised coordinate. Volume mesh deformation is per-
formed with Radial Basis Function (RBF) interpolation [15].

The LFD solver uses a second-order Jacobian matrix obtained with automatic differentiation.
The right-hand side vector ∂Rf

∂ws
is computed with central finite differences. The system is pre-

conditioned with a first-order Jacobian matrix. The linear system is solved using the sparse,
iterative linear solvers available in PETSc [16].

3 RESULTS

Numerical results are reported for the NASA Benchmark Supercritical wing for which the CAD
geometry, structural model and experimental data is available in literature [17]. The aim is to
identify the flutter point (i.e. critical value of dynamic pressure) for the wing at M = 0.8 with
an angle-of-attack of 5 deg, using R-134a gas as a fluid medium. The specific flow conditions
investigated in this work are summarised in Tab. (1) with imperial units. Regarding the structural
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Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 Case 11 Case 12 Case 13

M 0.799 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.801 0.801
q [ psf] 10.02 25.00 35.00 50.00 75.00 100.00 134.00 143.00 152.00 168.80 200.00 225.00 250.00
Re 237461 592224 829213 1184801 1777732 2371336 3178880 3392751 3606668 4006103 4748658 5343835 5939368

Rec [1/ ft] 178096 444168 621910 888601 1333299 1778502 2384160 2544563 2705001 3004577 3561493 4007876 4454526
V [ ft/ s] 440.45 440.63 440.59 440.51 440.39 440.21 440.05 440.00 439.96 439.88 439.70 439.58 439.46
a [ ft/ s] 551.08 550.94 550.85 550.71 550.48 550.25 549.94 549.86 549.78 549.62 549.34 549.11 548.88
Tstat [

◦F] 80.87 80.83 80.83 80.82 80.81 80.80 80.78 80.77 80.77 80.76 80.74 80.73 80.71
ρ [ slugs/ ft3] 0.00010 0.00026 0.00036 0.00052 0.00077 0.00103 0.00138 0.00148 0.00157 0.00175 0.00207 0.00233 0.00259

γ 1.1121 1.1122 1.1123 1.1124 1.1126 1.1128 1.1131 1.1131 1.1132 1.1133 1.1136 1.1138 1.1139
µ [ lb · s/ ft2] 2.555E-07 2.555E-07 2.555E-07 2.555E-07 2.555E-07 2.555E-07 2.554E-07 2.554E-07 2.554E-07 2.554E-07 2.554E-07 2.554E-07 2.55E-07

Pr 0.6839 0.6840 0.6841 0.6842 0.6844 0.6845 0.6847 0.6848 0.6848 0.6849 0.6851 0.6853 0.6854
Ptot [ psf] 40.00 99.72 139.61 199.45 299.18 399.00 534.69 570.61 606.53 673.59 798.21 898.01 997.83
Pstat [ psf] 28.207 70.319 98.449 140.644 210.975 281.366 377.050 402.380 427.711 474.996 562.873 633.255 703.643
Tstag [

◦F] 100 100 100 100 100 100 100 100 100 100 100 100 100

Table 1: Flow conditions for the flutter analysis. The dynamic pressure ranges from 10 psf to 250 psf whereas the
angle-of-attack is 5 deg for all flow conditions.

Discretisation Scaling Mesh size (Million)

Level 1 4.00 0.77
Level 2 2.00 3.13
Level 3 1.25 10.90
Level 4 1.10 12.82
Level 5 1.00 14.77
Level 6 1/1.10 36.67
Level 7 1/1.25 40.47
Level 8 1/2.00 81.02

Table 2: Family of meshes for the mesh convergence study. Starting from Level 5, a number of 4 coarser meshes
and 3 finer meshes were obtained by scaling the target element size.

model, two d.o.f. are considered, specifically vertical translation in the Z direction (heave) and
rigid rotation around the Y axis (pitch). The structural model is implemented with a modal
formulation and the mode shapes corresponding to heave and pitch were generated using a rigid
translation of 1m and a rigid rotation of 1 rad, respectively. Values of mass and stiffness were
taken from literature for the Pitch And Plunge Apparatus (PAPA) configuration [18]. Note, the
splitter plate was modelled as a symmetry plane in all CFD simulations run for this paper.

3.1 Spacial and temporal discretisation

A preliminary mesh convergence study was undertaken. Starting from the CAD geometry, a
CFD mesh is obtained with the BAE Systems Corporate CFD Suite in three steps: first, wall
surfaces are meshed according to target element sizes provided by the user at distinct locations
in the domain; secondly, the boundary layer is grown from the wall surfaces according to the
requirements of turbulence model; thirdly, the domain is filled with a Cartesian background
mesh. The process is almost completely automatic once the target mesh element size is set
at few specific locations. Using some engineering judgement at first, a reference mesh with
14.77×106 cells was obtained. From that, a family of 8 meshes was derived by scaling the target
element size by a factors of 1.10, 1.25, 2 and 4, as summarised in Tab. (2). Aerodynamic forces
and pressure distribution were then computed, in turn, for all meshes in the family by running a
steady-state simulation for the flow condition named Case 6 in Tab. (1) with the SST turbulence
model and CFL number of 1.5. Each steady-state simulation run for a fixed number of 80000
iterations during which the density residual decreased to values smaller than 1 × 10−7. The
final values of CFz (coefficient of aerodynamic force in the vertical direction) is plotted against
the discretisation level in Fig. 1(a). Apart from Level 1, the maximum difference between the
other Levels 2 to 8 is smaller than 2%. This is confirmed by the pressure distribution on the
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(a) Coefficient of force in the vertical direction (b) Coefficient of pressure at 60% of the span

Figure 1: Mesh convergence study. A steady-state simulation at the same flow condition was performed for all
discretisation levels. The assessment was conducted looking at the aerodynamic force in the vertical
direction, CFz and the pressure distribution at 60% of the span.

(a) Level 2 mesh, 3.13× 106 cells (b) Level 4 mesh, 12.82× 106 cells

Figure 2: Mesh convergence study. Two meshes were chosen for the aeroelastic analysis, corresponding to Level
2 and Level 4 in Tab. (2).

upper surface at 60% of the span in Fig. 1(b) which shows a visible difference between Level
1 and all other levels. In addition, the pressure distribution from [17] is reported in Fig. 1(b)
as well. Although the literature data is from unsteady simulations, it provides a range over
which the pressure distribution is expected. As a result of the mesh convergence study, two
meshes were chosen for the subsequent simulations, specifically Level 2 and Level 4 with 3.13×
106 and 12.82 × 106 cells, respectively. The coarse mesh in Fig. 2(a) represents a trade-off
between accuracy and computational cost. Thus, it became the preferred choice for the CFD-
CSM simulations. The fine mesh in Fig. 2(b) was employed mainly to investigate aerodynamic
phenomena when fewer simulations were needed.

The temporal discretisation was investigated next. An unsteady CFD-CSM simulation was
performed with the fine mesh for 3 values of time step, specifically 1 × 10−4 s, 2 × 10−4 s and
4 × 10−4 s, and for a total simulation time of 5 s. The flow condition corresponds to Case 5
in Tab. (1) and an initial disturbance of 0.1% of the free-stream velocity was prescribed in the
velocity of both d.o.f. . Loosely and strongly coupled schemes were investigated for a total
of 6 simulations. Note, the key difference between loosely and strongly coupled algorithms
lies in the exchange of information (e.g. forces and mesh deformation) between the CFD and
CSM solvers. In a loosely coupled scheme, the exchange happens only once for each physical
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(a) Heave, whole time-history (b) Pitch, whole time-history

(c) Heave, close-up (d) Pitch, close-up

Figure 3: Time-step analysis. A number of 6 unsteady, initial disturbance CFD-CSM simulations were performed
with the same fine mesh, same flow conditions but different time-step and coupling scheme. An overview
and a close-up of the GAF time-history are provided for both d.o.f.

time-step whereas in a strongly coupled approach this happens multiple times within the same
physical time-step, specifically twice for our simulations. The time-history of the GAFs is
depicted in Fig. 3 for both d.o.f. . Looking at Fig. 3(a) and Fig. 3(b), it is clear that all loosely
coupled simulations capture the system’s response in terms of oscillation frequency but the
larger time-steps (2×10−4 s and 4×10−4 s) produce secondary oscillations. This is particularly
clear from Fig. 3(c) and Fig. 3(d). Regarding the strongly coupled simulations, both time-steps
1 × 10−4 s and 2 × 10−4 s provide a smooth response curves. Overall, the time-step analysis
was unable to identify a converged time-step value and further investigation is needed in that
direction. However, the largest relative difference in the GAF responses was found around 1.65 s
for the pitch d.o.f. as shown in Fig. 3(d) and it is quantified in 5% with respect to the strongly
coupled smallest time-step. Considering only time-steps that provide a smooth response for
both d.o.f. , this difference is down to less than 3%. Thus, a time-step of 2 × 10−4 s with a
strongly coupled scheme represents a trade-off between computational cost and accuracy.

3.2 Flutter analysis with linearised methods

The flutter point was first computed with the LFD solver. The steady-state solution needed
to perform the flow linearisation was obtained with a static aeroelastic trimming. In practice, a
steady-state coupled CFD-CSM simulation was run with the coarse mesh and the SA turbulence
model. Every 500 CFD iterations, 1 coupled CFD-CSM iteration was performed to update
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(a) Magnitude of the entry Q24 = CFzθ (b) Phase of the entry Q24 = CFzθ

Figure 4: The dynamic derivative Q24 = CFzθ was computed with the LFD at 2 distinct flow conditions to
highlight the influence of the linearisation point on the entries of Q.

the wing position in terms of heave translation and pitch rotation. An artificial damping of
250N s/m was added to structural model to speed-up the trimming process which converged in
less than 80 coupled CFD-CSM iterations. Two results were obtained: the equilibrium position
of the wing (i.e. non-zero vertical translation and non-zero pitch rotation) and the corresponding
flow solution. The LFD solver was then restarted from the aeroelastic trimmed solution and the
dynamic derivatives were computed at 8 frequencies, specifically 0 rad/ s, 5 rad/ s, 10 rad/ s,
15 rad/ s, 20 rad/ s, 30 rad/ s, 45 rad/ s and 60 rad/ s. The entries of the matrix Q in Eq. (6)
were eventually computed with Eq. (8).

Although the LFD needs only one linearisation point, the whole process was repeated for 2
flow conditions (Case 5 and 6). The objective was to investigate the effects of the linearisation
point on the dynamic derivatives and the evaluation of the flutter point. The representative entry
Q24 of Q, which links a change in the pitch rotation to a change in the vertical force, is shown
in Fig. 4. Taking Case 6 as reference, the relative error at frequency 0 in terms of magnitude
(Fig. 4(a)) is -22% with respect to Case 5. At the largest value of reduced frequency, the relative
error becomes smaller (-3.3%). When it comes to Fig. 4(b), the phase at frequency 0 is 0 for all
flow conditions, as expected from theory. A relative error of -12% was found between Case 6
and Case 5 at the largest value of reduced frequency.

Once the entries of the matrix Q are available, the flutter equation (6) can be solved with a
tracing algorithm based on Newton’s method [19]. As a result, the evolution of the two eigen-
values (one for each d.o.f. ) of Eq. (6) is shown in Fig. 5 with respect to the dynamic pressure.
The heave mode is always stable as visible in Fig. 5(a). Conversely, the pitch mode evolves
into flutter when a critical value of dynamic pressure q∗ is reached. The specific value of q∗

depends on the flow condition at which the dynamic derivatives were computed. It was found
that q∗ = 253 psf for Case 6 and q∗ = 303 psf for Case 5. Regarding the flutter frequency
in Fig. 5(b), the two flow conditions lead to very similar values in the range [4.3, 4.6]Hz. The
flutter point obtained with the LFD closely resemble the preliminary result provided in [17] and
computed with an adaptive version of the LFD.

The matrix Q was computed with the pulse-excitation method for Case 6 and 5 as well, using
the coarse mesh and the SA turbulence model. Each d.o.f. was excited individually by means
of a forced-motion unsteady simulation. The input signal was built according to the guidelines
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(a) Real part of the eigenvalue, Re (λ) (b) Frequency, Im(λ)
2π

Figure 5: Flutter analysis with the LFD method. Plots of the eigenvalues of Eq. (6) with respect to dynamic
pressure. The pitch mode becomes unstable at 253 psf for Case 6, 303 psf for Case 5.

(a) Real part of the eigenvalue, Re (λ) (b) Frequency, Im(λ)
2π

Figure 6: Flutter analysis with the pulse-excitation method. Plots of the eigenvalues of Eq. (6) with respect to
dynamic pressure. The pitch mode becomes unstable at 418 psf for Case 6, 118 psf for Case 5.

provided in [3] to excite the frequency range between 0 and 20Hz. In practice, the total simu-
lation time is 10 s, the time-step is 0.001 s, the pulse has a duration of 0.25 s and an amplitude
of 0.001 with its peak located at 30% of its duration. The unsteady simulations (one for each
d.o.f. ) were restarted from the static aeroelastic trimmed solution, which was already avail-
able from the LFD study, and the input signal was added to the baseline initial deformation.
A number of 50 CFD iterations were run for each physical time-step. In addition to the two
pulse-excitation simulations, a drift simulation was performed as well with the same time dis-
cretisation and restart parameters to account for any deviation of the aerodynamic forces from
their equilibrium values. Once the time-histories of the aerodynamic forces were available, the
entries of Q were computed with a DFT, as described in 2. Subsequently, the flutter equation
was solved following the same steps already described in the previous paragraph for the LFD
and the resulting plots are shown in Fig. 6. The heave d.o.f. is stable whereas flutter occurs in
the pitch d.o.f. at 418 psf for Case 6 and 118 psf for Case 5 as reported in Fig. 6(a). Regarding
the flutter frequency, it is evaluated at 3.89Hz and 4.81Hz, respectively. Thus, the flutter points
computed with the LFD solver and the pulse-excitation method differ in terms of dynamic pres-
sure. However, both sets of results are within the range of dynamic pressure expected from
linearised methods for this specific test case. The difference might be due to linearisation pro-
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(a) Heave (b) Pitch

Figure 7: Evolution of the generalised coordinates during the static aeroelastic trimming for 3 flow conditions
(Case 3, 6 and 13). The trimming process was repeated for all flow conditions in Tab. (1).

cess which should exclude any non-linear effect. An investigation, for example into the pulse
amplitude, is needed.

3.3 Flutter analysis with the non-linear CFD-CSM

The non-linear method described in Section 2 was employed next to evaluate the flutter point.
For all flow conditions in Tab. (1), the static aeroelastic trimming process, described at the
beginning of Section 3.2, was performed with the coarse mesh and the SA turbulence model.
In Fig. 7 the evolution of the generalised coordinates towards the aeroelastic equilibrium is
shown for 3 flow conditions. The static aeroelastic trimmed solution was the basis to restart an
unsteady, coupled CFD-CSM simulation with a total simulation time of 5 s. The time discreti-
sation parameters for the unsteady CFD-CSM simulation were chosen according to the results
presented in Section 3.1, specifically a strongly coupled scheme with a total of 50 CFD sub-
iterations split in 2 CFD-CSM iterations for each physical time-step and a time-step of 2×10−4 s
was employed. An initial disturbance of 0.1% of the free-stream velocity was prescribed in the
velocity of both d.o.f. to speed-up the development of the response towards a stable (or unsta-
ble) behaviour. The time-histories of the generalised velocities for Case 4, 5 and 6 are shown
in Fig. 8 as an example. The heave d.o.f. was found to be stable for all flow conditions and a
subset of the available results is shown in Fig. 8(a). More interesting is the behaviour of the
pitch d.o.f. in Fig. 8(b) since its response is stable for values of dynamic pressure up to 50 psf
(Case 4) and it becomes unstable at 75 psf (Case 5) and 100 psf (Case 6).

The results of the unsteady simulations were analysed with the logarithmic-decrement (log-dec)
algorithm and the matrix-pencil method. During the post-processing, it was found both methods
can provide a wrong estimation of the damping when applied to oscillations which occur around
a time-dependent reference value. In practice, that is the case of the generalised coordinates
which, starting from the initial value computed with the trimming process, can develop a slightly
different equilibrium towards the end of the unsteady simulation because of more converged
aerodynamic forces. A possible workaround to obtain a more robust formulation was to post-
process the generalised velocity instead since it can be safely assumed that the velocity value
at the equilibrium is zero. For the log-dec, only data from the last 15 periods were taken into
account in order to deal with an almost non-periodic response in the heave d.o.f. for Case 7
and above, as reported in the following paragraph. Regarding the matrix-pencil, its input signal
was downsampled to 300 data points to speed-up the computations. Damping and frequency
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(a) Heave (b) Pitch

Figure 8: Time-histories of the generalised velocities from 3 unsteady, coupled CFD-CSM simulations. The sys-
tem’s response in the heave d.o.f. is always stable whereas an unstable behaviour was found for pitch at
75 psf (Case 5) and 100 psf (Case 6).

(a) Damping (b) Frequency

Figure 9: Damping and frequency plotted against dynamic pressure. Log-dec algorithm was applied to the last 15
periods of the generalised velocities. Linear interpolation between the data points was used to compute
the crossings at q∗ and q�.

results are given in Fig. 9(a) and Fig. 9(b). Only plots for the pitch d.o.f. are reported for sake of
conciseness since the damping of the heave d.o.f. was positive (stable) for all flow conditions.
Applying linear interpolation between the data points, two crossings q∗ and q� of the horizontal
axis were identified for the pitch d.o.f. . Note, the specific values of q∗ and q� were estimated
with both log-dec and matrix-pencil method and their results differ by less than 4%. So, only the
numerical values from the log-dec are reported hereafter. The first crossing, which is assumed
to be the critical value for flutter, is at q∗ = 71.5 psf. For values of dynamic pressure q where
q < q∗, the system’s behaviour is stable. The second crossing is located at q� = 104.41 psf and
the pitch response is unstable for q∗ < q < q�. For q > q�, the behaviour becomes stable again
as shown with the time-histories in Fig. 10. Comparing Fig. 8 with Fig. 10, it is interesting to
notice that the pitch responses for q < q∗ and q > q� look similar, i.e. a damped oscillation.
However, the time-history of the heave d.o.f. , which is initially a damped oscillation for q < q∗,
evolves in an almost non-periodic signal when q > q�.

To further investigate on that, an additional unsteady simulation was performed with the fine
mesh and the SST turbulence model for Case 6. The static aeroelastic trimming is first per-

11



IFASD-2022-028

(a) Heave (b) Pitch

Figure 10: Time-histories of the generalised velocities from the unsteady, coupled CFD-CSM simulations run for
Case 7 to 10. Although the system’s response is stable for both d.o.f. , the time-histories of the heave
generalised velocity looks more and more aperiodic with an increasing value of q.

(a) Generalised aerodynamic forces (b) Power spectral density (PSD)

Figure 11: Time-history and PSD of the generalised aerodynamic forces for a fluid-only simulations run with the
fine mesh and the SST turbulence model for Case 6. The values in the time-history are expressed as
percent variation from the trimmed solution.

formed to obtain the equilibrium position of the wing. The unsteady simulation is then restarted
from the trimmed solution but the structure is kept fixed, not moving, since the objective of
the investigation is to obtain insights on the frequency contents of the aerodynamic forces. The
simulation was run for a total of 15 s, with a physical time-step of 5 × 10−3 s and 50 CFD
subiterations per time-step. The time-history of the generalised forces is depicted in Fig. 11(a).
The system’s response for both d.o.f. evolves from an initial transient (from 0 s to ≈ 10 s) into
simple oscillations (from ≈ 10 s onwards). The corresponding Power Spectral Density (PSD)
plots are given in Fig. 11(b) where one interesting region can be identified around 20Hz, which
might correspond to the fundamental frequency reported in the experimental data available in
literature [17].

4 CONCLUSIONS

This work reports on the flutter analysis performed on the NASA Benchmark Supercritical Wing
using the BAE Systems Corporate CFD Suite as part of the AePW-3 workshop. A 3.13 × 106

cells mesh with the SA turbulence model was employed for the analysis. Linearised methods
(i.e. LFD and pulse-excitation) were applied to the static aeroelastic trimmed solution (i.e. the
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equilibrium condition that fluid and structure reach with a steady-state assumption). The analy-
sis was repeated for two flow conditions, specifically q = 75 psf and q = 100 psf, to investigate
the effects of the linearisation point on the flutter computations. Both linearised methods pro-
vide a critical dynamic pressure for flutter in the range [120, 420] psf involving the pitch d.o.f. .
A non-linear approach was pursued as well which required one unsteady, coupled CFD-CSM
simulation with an initial disturbance for each flow condition to be investigated. The flutter
dynamic pressure was identified by post-processing the time-histories of the generalised veloc-
ities. The critical value of dynamic pressure was found at 71.50 psf for the pitch d.o.f. . The
difference between linearised and non-linear models seems to suggest a strongly non-linear be-
haviour of the fluid flow around the linearisation point and a high sensitivity to the linearisation
method. An interesting follow-up study might focus on the system’s behaviour for higher val-
ues of dynamic pressure (e.g. larger than 120 psf) since the results obtained so far suggest a
stabilisation of the pitch d.o.f. and a more chaotic response in the heave d.o.f. . Overall, the
results presented in this work are aligned with preliminary data available in literature for both
linearised and non-linear methods.
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